- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Kundu, Debanjana (3)
-
Sprung, Florian (2)
-
Castella, Francesc (1)
-
Hsu, Chi-Yun (1)
-
Lee, Yu-Sheng (1)
-
Lei, Antonio (1)
-
Liu, Zheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let be an elliptic curve and let be an odd prime of good reduction for . Let be an imaginary quadratic field satisfying the classical Heegner hypothesis and in which splits. The goal of this paper is two-fold: (1) we formulate a -adic BSD conjecture for the -adic -function introduced by BertoliniâDarmonâPrasanna [Duke Math. J. 162 (2013), pp. 1033â1148]; and (2) for an algebraic analogue of , we show that the âleading coefficientâ part of our conjecture holds, and that the âorder of vanishingâ part follows from the expected âmaximal non-degeneracyâ of an anticyclotomic -adic height. In particular, when the IwasawaâGreenberg Main Conjecture is known, our results determine the leading coefficient of at up to a -adic unit. Moreover, by adapting the approach of BurungaleâCastellaâKim [Algebra Number Theory 15 (2021), pp. 1627â1653], we prove the main conjecture for supersingular primes under mild hypotheses. In the -ordinary case, and under some additional hypotheses, similar results were obtained by AgboolaâCastella [J. ThĂ©or. Nombres Bordeaux 33 (2021), pp 629â658], but our method is new and completely independent from theirs, and apply to all good primes.more » « less
-
Kundu, Debanjana; Lei, Antonio; Sprung, Florian (, Mathematische Annalen)Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
